

www.copevillewater.com mywater@copevillewater.com

Annual Drinking Water Quality Report

TX0430029 COPEVILLE SUD

16120 FM 1778 Nevada, TX 75173

Annual Water Quality Report for the period of January 1, 2024, to December 31, 2024

COPEVILLE SUD provides purchased surface water from North Texas MWD Wylie WTP, Located in Collin County, and CITY OF FARMERSVILLE located in Collin County. This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

COPEVILLE SUD is a Purchased Surface Water System Regular Monthly Board Meeting Second, Thursday of Every Month at 7:00 pm For more information regarding this report contact:

Name: Ross Brookbank

Phone: 972-853-4630

Este reporte incluye información importante sobre elagua para tomar. Para Asistencia en espaňol, favor de llamar al telfono (972) 853-4630.

Definitions and Abbreviations: The following tables contain scientific terms and measures, some of which may require explanations.

Action Level:	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Action Level Goal (AGL):	The level of a contaminant in drinking water below which there is no known or expected risk to health ALDs allow for a margin of safety.
Avg:	Regulatory compliance with some MCL's is based on running annual average of monthly samples.
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG:	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDLG:	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL:	Million fibers per liter (a measure of asbestos)
MREM:	Millirems per year (a measure of radiation absorbed by the body)
NA:	Not Applicable
NTU:	Nephelometric turbidity unites (a measure of turbidity)
pCi/L:	Picocuries per liter (a measure of radioactivity)
PPB:	Micrograms per liter or parts per billion – or one ounce in 7,350,000 gallons of water.
PPM	Milligrams per liter or parts per million – or one ounce in 7,350 gallons of water.
PPQ:	Parts per quadrillion, or pictograms per liter (pg/L)
PPT:	Part per trillion, or nanograms per liter (ng/L)
Treatment Technique or TT:	A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily

indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

COPEVILLE SUD purchases water from CITY OF FARMERSVILLE. CITY OF FARMERSVILLE provides purchase surface water from North Texas MWD Wylie WTP located in Collin County.

CITY OF FARMERS	CITY OF FARMERSVILLE-WATER QUALITY DATA FOR YEAR 2024											
Lead and Copper	Date Sampled	MCLG	Action Level	90th	# Sites Over AL	Units	Violation	Likely Source of Contamination				
			(AL)	Percentile								
Copper	2024	1.3	1.3	1.09	0	ppm	Ν	Erosion of natural deposits;				
								Leaching from wood preservatives;				
								Corrosion of household plumbing				
								systems.				

2024 City of Farmersvi	lle – 0430004 – V	Vater Quality To	est Results					
Disinfectants and Disinfection By-Products	Collection Date	Highest Level or Average Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)*	2024	14	7 - 16.4	No goal for the total	60	ppb	Ν	By-product of drinking water disinfection.
*The value in the Highest Level	or Average Detected	column is the highest a	average of all HAA5 sa	ample results collected	ed at a location over a y	ear		
Total Trihalomethanes (TTHM)	2024	21	14.5 - 26.3	No goal for the total	80	ppb	Ν	By-product of drinking water disinfection.
*The value in the Highest Level	or Average Detected of	column is the highest a	verage of all TTHM s	ample results collect	ed at a location over a y	ear	-	
Nitrate (measured as Nitrogen)	2024	0.37	0.37 - 0.37	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Nitrate Advisory: Nitrate in dri quickly for short periods of tim Disinfectant Residual	U	11			0 0	0		by syndrome. Nitrate levels may rise
	Year		Danga of	MRDL	MRDLG	Unit of	Violation	Source in Drinking Water
Disinfectant Residual	rear	Average Level	Range of Levels Detected	MRDL	MRDLG	Measure	(Y/N)	Source in Drinking Water
Chlorine	2024	2.12	0.50 - 3.30	4	4	ppm	N	Water additive used to control microbes

COPEVILLE SUD purchases water from NORTH TEXAS MWD WYLIE WTP. NORTH TEXAS MWD WYLIE WTP provides surface water from Lake Lavon located in Collin County.

Disinfection By Products:	Collection Date	Highest Level	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely source of contamination
		Detected						
Bromate	2024	Levels lower	0 - 0	5	10	Ppb	No	By-product of drinking water
		than detect						ozonation.
		level						

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2024	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2024	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.

Barium	2024	0.06	0.04 - 0.06	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2024	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries.
Cadmium	2024	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2024	1.3	1.3 - 1.3	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2024	128	28.5 - 128	0 - 0	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories.
Fluoride	2024	0.712	0.316 - 0.712	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2024	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2024	0.926	0.0592 - 0.926	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2024	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2024	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore-processing sites; drug factories.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2024	5.3	5.3 - 5.3	0	50	pCi/L	No	Decay of natural and man-made deposits.

Gross alpha excluding radon and uranium	2024	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2024	Levels lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Alachlor	2024	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Atrazine	2024	0.1	0.1 - 0.1	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2024	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Di (2-ethylhexyl) adipate	2024	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2024	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Endrin	2024	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Heptachlor	2024	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2024	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2024	Levels lower than detect level	0 - 0	0	1	ррb	No	Discharge from metal refineries and agricultural chemical factories.

Hexachlorocyclopentadiene	2024	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2024	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2024	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Simazine	2024	0.071	0.071 - 0.071	4	4	ppb	No	Herbicide runoff.
Toxaphene	2024	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 – Trichloroethane	2024	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 – Trichloroethane	2024	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 – Dichloroethylene	2024	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 – Trichlorobenzene	2024	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 – Dichloroethane	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 – Dichloropropane	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.

Carbon Tetrachloride	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.
Chlorobenzene	2024	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2024	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2024	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2024	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2024	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2024	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2024	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2024	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2024	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2024	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dicholoroethylene	2024	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.

Turbidity	Limit (Treatment Technique)	Level Detected	Violation	Likely Source of Contamination
Highest single measurement	1 NTU	0.93	No	Soil runoff.
Lowest monthly percentage (%) meeting limit	0.3 NTU	96.7%	No	Soil runoff.

NOTE: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the ٠ effectiveness of our filtration.

				MRDL:				
Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample	MRDL	MRDLG	Units	Source of Chemical
Chlorine Dioxide	2024	0.027	0	0.82	0.80	0.80	ppm	Disinfectant.
Chlorite	2024	0.187	0	0.95	1.00	N/A	ppm	Disinfectant.

NOTE: Water providers are required to maintain a minimum chlorine disinfection residual level of 0.5 parts per million (ppm) for systems disinfecting with ٠ chloramines and an annual

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Cryptosporidium	2024	Levels lower than detect level	0 - 0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.
Giardia	2024	Levels lower than detect level	0 - 0	(Oo) Cysts/L	Human and animal fecal waste. Naturally present in the environment.

• NOTE: Levels detected are for source water, not for drinking water. No cryptosporidium or giardia were found in drinking water

Secondary and Other Constituents Not Regulated

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Aluminum	2024	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.

MODI

Calcium	2024	66.5	35.4 - 66.5	ppm	Abundant naturally occurring element.
Chloride	2024	95.3	15.4 - 95.3	ppm	Abundant naturally occurring element; used in water purification; by-product of oil field activity.
Iron	2024	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Magnesium	2024	9.84	5.88 - 9.84	ppm	Abundant naturally occurring element.
Manganese	2024	0.082	0.029 - 0.082	ppm	Abundant naturally occurring element.
Nickel	2024	0.0067	0.0048 - 0.0067	ppm	Erosion of natural deposits.
рН	2024	8.9	7.4 - 8.9	units	Measure of corrosivity of water.
Silver	2024	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.
Sodium	2024	88.7	35.5 - 88.7	ppm	Erosion of natural deposits; by-product of oil field activity.
Sulfate	2024	165	39.6 - 165	ppm	Naturally occurring; common industrial by-product; by-product of oil field activity.
Total Alkalinity as CaCO3	2024	128	56.5 - 128	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Solids	2024	509	271 - 509	ppm	Total dissolved mineral constituents in water.
Total Hardness as CaCO3	2024	202	105 - 202	ppm	Naturally occurring calcium.
Zinc	2024	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring element used in the metal industry.

TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system contact **Ross Brookbank (972)853-4630.**

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	06/14/2022	1.3	1.3	0.425	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household
Lead	06/14/2022	0	15	1.34	0	ppb	Ν	Corrosion of household plumbing systems; Erosion of natural deposits.

2024 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2024	22	7.1 - 32.9	No goal for the total	60	ppb	Ν	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total Trihalomethanes	2024	35	15.2 - 44.3	No goal for the	80	ppb	N	By-product of drinking water disinfection.
(TTHM)				total				

*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chloramines	2024	1.56	.50-3.50	4	4	ppm	ppm	Water additive used to control microbes.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrogen]	2024	0.444	0.373 - 0.444	10	10	ppm	Ν	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2024	15.1	3.41-15.1	ppb	By-product of drinking water disinfection.
Bromoform	2024	4.4	1.42-4.4	ppb	By-product of drinking water disinfection.
Bromodichloromethane	2024	16	5.19-16	ppb	By-product of drinking water disinfection.
Dibromochloromethane	2024	12.6	5.12-12.6	ppb	By-product of drinking water disinfection

Contaminants	Collection Date	Average Level (µg/L)	Range of Levels Detected (µg/L)	Health-Based Reference Concentration (µg/L) (recommended, not required in the CCR)	Health Information Summary (recommended, not required in the CCR)
PFBA	2023	.0064	0.0	051-0.0076	This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.
PFBS	2023	0.0038	0.00	034 – 0.0047	This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.
PFHxA	2023	0.0058	0.00	045 – 0.0070	This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.
PFPeA	2023	0.0065	0.00	049 – 0.0081	This data is part of UCMR5 results in relation to minimum reporting levels and available non-regulatory health-based reference concentrations.

Violation Type	Violation Begin	Violation End	Violation Explanation
None			

A service line inventory has been prepared and is publicly accessible online. To view the inventory, please visit the following direct link: https://copevillewater.com/documents/472/Lead_and_Copper_Inventory_Spreadsheet_latest.pdf