

Office 972-853-4630 Fax 972-853-0060

Annual Drinking Water Quality Report

TX0430029 COPEVILLE SUD

Annual Water Quality Report for the period of January 1, 2022, thru December 31, 2022,

COPEVILLE SUD provides purchased surface water from Lake Lavon located in Collin County. This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

COPEVILLE SUD is a Purchased Surface Water System Regular Monthly Board Meeting Second, Thursday of Every Month at 7:00 pm 16120 FM 1778 Nevada, TX 75173 For more information regarding this report contact:

Name: Ross Brookbank, General Manager Phone: 972-853-4630

Este reporte incluye información importante sobre elagua para tomar. Para Asistencia en español, favor de llamar al telfono (972) 853-4630

Definitions and Abbreviations:	The following tables contain scientific terms and measures, some of which may require explanations.
Action Level:	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Action Level Goal (AGL):	The level of a contaminant in drinking water below which there is no known or expected risk to health ALDs allow for a margin of safety.
Avg:	Regulatory compliance with some MCL's is based on running annual average of monthly samples.
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG:	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDLG:	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL:	Million fibers per liter (a measure of asbestos)
MREM:	Millirems per year (a measure of radiation absorbed by the body)
NA:	Not Applicable
NTU:	Nephelometric turbidity unites (a measure of turbidity)
pCi/L:	Picocuries per liter (a measure of radioactivity)
PPB:	Micrograms per liter or parts per billion – or one ounce in 7,350,000 gallons of water.
РРМ	Milligrams per liter or parts per million – or one ounce in 7,350 gallons of water.
PPQ:	Parts per quadrillion, or pictograms per liter (pg/L)
PPT:	Part per trillion, or nanograms per liter (ng/L)
Treatment Technique or TT:	A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas
 production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable that the general population to certain microbial contaminants, such as Cryptosporidium, drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure in available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

COPEVILLE SUD purchases water from the CITY OF FARMERSVILLE. CITY OF FARMERSVILLE provides purchase service water from LAKE LAVON Collin County.

COPEVILLE SUD purchases water from NORTH TEXAS MWD WYLIE WTP. NORTH TEXAS MWD WYLIE WTP provides purchased surface water from LAKE LAVON Collin County.

TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system, please contact Terry Strickland at 972-853-4630.

Lead and Copper								
Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	#Sites Over AL	Units	Violation	Likely Source of Contamination	
Lead	2022	15	1.34	0	ppb	No	Corrosion of household plumbing systems; erosion of natural deposits	
Copper	2022	1.3	0.425	0	ppm	No	Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems	

ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Copeville Special Utility District is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Copeville Special Utility District Water Quality Data for year 2022

Coliform Bacteria

			Fecal Coliform or		
Maximum			E. Coli Maximum	Total # of Positive	
Contaminant	Total Coliform Maximum	Highest # of	Contaminant	E. Coli or Fecal	
Level Goal	Contaminant Level	Positive	Level	Coliform Samples	Likely Source of Contamination
0	0	0	0	0	Naturally present in the environment

NOTE: Reported monthly test found no fecal coliform bacteria. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present.

Regulated Contaminants

Disinfectants and Disinfection	Collection	Highest Level	Range of Levels	MCCI	MCI	Linita) (is lation	
By- Products	Date	Detected	Detected	MCGL	MCL	Units	Violation	Likely source of Contamination
				No				
				goal				
				for				
				the				
Total Haloacetic Acids (HAA5)	2022	18	0 - 16.7	total	60	ppb	No	By-Product of drinking water chlorination
				No				
				goal				
				for				
Total Trihalomethanes				the				
(TTHM)	2022	39	24.6 - 49.7	total	80	ppb	No	By-Product of drinking water chlorination
Bromate	2022	4.9	4.9 - 4.9	5	10	ppb	No	By-Product of drinking water ozonation

NOTE: Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future. TCEQ only requires on sample annually for compliance testing. For Bromate, compliance is based on the running annual average.

	Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely source of Contamination
ſ			Levels lower		- C				Discharge from petroleum refineries; fire retardants; ceramics; electronics; and test
	Antimony	2022	than detect level	0 - 0	6	6	ppb	No	addition.
			Levels lower						Erosion of natural deposits; runoff from orchards; runoff form glass and electronics
	Arsenic	2022	than detect level	0 - 0	0	10	bpp	No	production wastes.

Barium	2022	0.061	0.060 - 0.061	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2022	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal- burning factories; discharge from electrical; aerospace; and defense industries.
Cadmium	2022	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge form metal refineries; runoff form waste batteries and paints.

Copeville Special Utility District								
Water Quality Data for year 2022(Cont.)								
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely source of Contamination
Chromium	2022	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits
Cyanide	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories
Fluoride	2022	0.688	0.278 - 0.688	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2022	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; from cropland
Nitrate (measured as Nitrogen)	2022	0.187	0.149 - 0.187	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits
Selenium	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2022	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics; glass; and leaching from ore processing sites; drug factories.

Nitrate Advisory: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely source of Contamination
								Decay of natural and man-made deposits
Beta/Photon emitters	2022	4.7	4.7 - 4.7	0	50	pCi/l	No	
Gross alpha excluding		Levels lower than						Erosion of natural deposits
radon and uranium	2022	detect level	0 - 0	0	15	pCi/l	No	
		Levels lower than						Erosion of natural deposits
Radium	2022	detect level	0 - 0	0	5	pCi/l	No	

Water Quality Data for Year 2021 (Cont.)

Synthetic Organic			Contraction Quality Duck		- (- /		
Contaminants including	Collection	Highest Level	Range of Levels					
pesticides and herbicides	Date	Detected	Detected	MCLG	MCL	Units	Violation	Likely source of Contamination
		Levels lower than						Residue of banned herbicide.
2,4,5 TP (Silvex)	2022	detect level	0 - 0	50	50	ppb	No	
								Runoff from herbicide used on row crops
		Levels lower than						
2, 4 - D	2022	detect level	0 - 0	70	70	ppb	No	
								Runoff from herbicide used on row crops
		Levels lower than						
Alachlor	2022	detect level	0 - 0	0	2	ppb	No	
								Runoff from agricultural pesticide
		Levels lower than						
Aldicarb	2022	detect level	0 - 0	1	3	ppb	No	
								Runoff from agricultural pesticide
		Levels lower than						
Aldicarb Sulfone	2022	detect level	0 - 0	1	3	ppb	No	
								Runoff from agricultural pesticide
		Levels lower than						
Aldicarb Sulfoxide	2022	detect level	0 - 0	1	4	ppb	No	
								Runoff from herbicide used on row crops
Atrazine	2022	0.12	0.10 - 0.12	3	3	ppb	No	
								Leaching from linings of water storage
		Levels lower than						tanks and distribution lines
Benzo (a) Pyrene	2022	detect level	0 - 0	0	200	ppt	No	

								Leaching of soil fumigant used on rice and
		Levels lower than						alfalfa
Carbofuran	2022	detect level	0 - 0	40	40	ppb	No	
								Residue of banned termiticide
		Levels lower than						
Chlordane	2022	detect level	0 - 0	0	2	ppb	No	
								Runoff from herbicide used on right of
		Levels lower than						way
Dalapon	2022	detect level	0 - 0	200	200	ppn	No	
								Discharge from chemical factories
		Levels lower than						
Di (2-ethylhexyl) adipate	2022	detect level	0 - 0	400	400	ppb	No	

Copeville Special U	Jtility District
---------------------	------------------

Water Quality Data for Year 2022 (Cont.)

			Water Quality Date			,		
Synthetic Organic								
Contaminants including	Collection	Highest Level	Range of Levels					
pesticides and herbicides	Date	Detected	Detected	MCLG	MCL	Units	Violation	Likely source of Contamination
		Levels lower than						Discharge from rubber and chemical
Di (2-ethylhexyl) phthalate	2022	detect level	0 - 0	0	6	ppb	No	factories
								Runoff/leaching from soil fumigant used
Dibromochloropropane		Levels lower than						on soybeans, cotton, pineapples, and
(DBCP)	2022	detect level	0 - 0	0	200	ppt	No	orchards.
		Levels lower than						Runoff from herbicide used on soybeans
Dinoseb	2022	detect level	0 - 0	7	7	ppb	No	and vegetables
		Levels lower than						Residue of banned insecticide
Endrin	2022	detect level	0 - 0	2	2	ppb	No	
		Levels lower than						Discharge from petroleum refineries
Ethylene dibromide	2022	detect level	0 - 0	0	50	ppt	No	
		Levels lower than						Residue of banned termiticide
Heptachlor	2022	detect level	0 - 0	0	400	ppt	No	
		Levels lower than						Breakdown of heptachlor
Heptachlor epoxide	2022	detect level	0 - 0	0	200	ppt	No	
		Levels lower than						Discharge from metal refineries and
Hexachlorobenzene	2022	detect level	0 - 0	0	1	ppb	No	agricultural chemical factories
		Levels lower than						Discharge from chemical factories
Hexachlorocyclopentadiene	2022	detect level	0 - 0	50	50	ppb	No	

Lindane	2022	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff/leaching from insecticide used on cattle, lumber, and gardens
Methoxychlor	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, and livestock
Oxamyl (Vydate)	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff/leaching from insecticide used on apples, potatoes, and tomatoes
Pentachlorophenol	2022	Levels lower than detect level	0 - 0	0	1	daa	No	Discharge from wood preserving factories

Water Quality Data for Year 2022(Cont.)

Synthetic Organic Contaminants including	Collection	Highest Level	Range of Levels					
pesticides and herbicides	Date	Detected	Detected	MCLG	MCL	Units	Violation	Likely source of Contamination
								Herbicide Runoff
		Levels lower than						
Picloram	2022	detect level	0 - 0	500	500	ppb	No	
								Herbicide Runoff
		Levels lower than						
Simazine	2022	detect level	0 - 0	4	4	ppb	No	
								Runoff/leaching from insecticide used on
		Levels lower than						cotton and cattle
Tophene	2022	detect level	0 - 0	0	3	ppb	No	

	Collection	Highest Level	Range of Levels					
Volatile Organic Contaminants	Date	Detected	Detected	MCLG	MCL	Units	Violation	Likely source of Contamination
								Discharge from metal degreasing sites and
		Levels lower than						other factories
1, 1, 1 - Trichloroethane	2022	detect level	0 - 0	200	200	ppb	No	
								Discharge from industrial chemical
		Levels lower than						factories
1, 1, 2 - Trichloroethane	2022	detect level	0 - 0	3	5	ppb	No	
								Discharge from industrial chemical
		Levels lower than						factories
1,1 - Dichloroethylene	2022	detect level	0 - 0	7	7	ppb	No	
								Discharge from textile-finishing factories
		Levels lower than						
1, 2, 4 - Trichlorobenzene	2022	detect level	0 - 0	70	70	ppb	No	

								Discharge from industrial chemical
		Levels lower than						factories
1, 2 - Dichloroethane	2022	detect level	0 - 0	0	5	ppb	No	
								Discharge from industrial chemical
		Levels lower than						factories
1, 2 - Di chloropropane	2022	detect level	0 - 0	0	5	ppb	No	
								Discharge from factories; leaching from
		Levels lower than						gas storage tanks and landfills
Benzene	2022	detect level	0 - 0	0	5	ppb	No	
								Discharge from chemical plants and other
		Levels lower than						industrial activities
Carbon Tetrachloride	2022	detect level	0 - 0	0	5	ppb	No	

Water Quality Data for Year 2022 (Cont.)

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2022	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories
Dicloromethane	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories
Ethylbenzene	2022	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries
Styrene	2022	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills
Tetrachloroethylene	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners
Toluene	2022	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories
Trichloroothylono	2022	Levels lower than detect level	0 - 0	0	5	nnh	No	Discharge form metal degreasing sites and other factories
Trichloroethylene Vinyl Chloride	2022	Levels lower than detect level	0-0	0	2	ppb ppb	No	Leach from PVC piping; discharge from plastics factories
Xylenes	2022	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from industrial chemical factories

cis - 1, 2 - Dichloroethlene	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge form industrial chemical factories
o - Dichlorobenzene	2022	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories
p - Dichlorrobenzene	2022	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories
trans - 1, 2 -		Levels lower than						Discharge from industrial chemical factories
Dicholoroethylene	2022	detect level	0 - 0	100	100	ppb	No	

Water Quality Data for Year 2022 (Cont.)

Turbidity

	Limit (Treatment			
	Technique)	Level Detected	Violation	Likely source of Contamination
Highest single measurement	1 NTU	0.4 NTU	No	Soil runoff
Lowest Monthly percentage (%) meeting limit	0.3 NTU	99.50%	No	Soil runoff

NOTE: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration.

			Lowest Result of a					
		Average Level of	Single	Highest Result of				
Chemical Used	Year	Quarterly Data	Sample	Single Sample	MRDL	MRDLG	Units	Source of Chemical
Chlorine								Disinfectant used to control microbes
Residual								
(Chloramines)	2022	1.8	0.5	4.7	4	<4.0	ppm	
Chlorine Dioxide	2022	0	0	0.27	0.80	0.80	ppm	Disinfectant
Chlorite	2022	0.145	0	0.72	1.00	N/A	ppm	Disinfectant

NOTE: Water providers are required to maintain a minimum chlorine disinfection residual level of 0.5 parts per million (PPM) for systems disinfecting with chloramines and an annual average chlorine disinfection residual level of between 0.5 (ppm) and 4 parts per million (ppm).

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set

	Cryptosporidium and Giardia									
Contaminants	Collection	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination					
	Date									

Cry	ptosporidium	2022	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste
	Giardia	2022	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste

NOTE: Levels detected are for source water. No cryptosporidium or giardia were found in drinking water

Copeville Special Utility District Water Quality Data for Year 2021 (Cont.)

Lead and Copper

Lead and	Sampled	Action					
Copper	Date	Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely source of Contamination
							Corrosion of household plumbing systems, erosion of natural deposits
Lead	2022	15	1.34	0	ppb	None	
							Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing
Copper	2022	1.3	0.425	0	ppm	None	systems.

Additional Health Information for Lead: If present, elevated levels of leak can cause serious health problems especially for pregnant women and young children. Leak in drinking water is primarily from materials and components associated with service lines and home plumbing Copeville SUD is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or a http://www.epa.gov/safedrinkingwater/lead

Unregulated Contaminants

	Collection				
Contaminants	Date	Highest Level Detected	Range of Levels Detected	Units	Likely source of Contamination
Chloroform	2022	16.1	7.78 - 16.1	ppb	By-product of drinking water disinfectant
Bromoform	2022	5.68	1.43 - 5.68	ppb	By-product of drinking water disinfectant
Bromodichloromethane	2022	18.6	8.58 - 18.6	ppb	By-product of drinking water disinfectant
Dibromochloromethane	2022	15.3	6.47 - 15.3	ppb	By-product of drinking water disinfectant

Note: Chloroform, Bromoform, Bromodichloromethane, and Dibromochlormethane are disinfection by-products. There is no maximum contaminant level or these chemicals at the entry point of distribution.

Water Quality Data for Year 2022 (Cont.)

Secondary and Other Constituents Not Regulated

	Collection				
Contaminants	Date	Highest Level Detected	Range of Levels Detected	Units	Likely source of Contamination
		Levels lower than detect			
Aluminum	2022	level	0 - 0	ppm	Erosion of natural deposits
Calcium	2022	69.8	32.2 - 69.8	ppm	Abundant naturally occurring element
					Abundant naturally occurring element,
Chloride	2022	107	30.0 - 107	ppm	used in water purification, by-product of oil field activity
		Levels lower than detect			Erosion of natural deposits, iron or steel
Iron	2022	level	0 - 0	ppm	water delivery equipment or facilities
Magnesium	2022	9.7	9.61 - 9.70	ppm	Abundant naturally occurring element
Manganese	2022	0.159	0.004 - 0.159	ppm	Abundant naturally occurring element
Nickel	2022	0.0098	0.0069 - 0.0098	ppm	Erosion of natural deposits
рН	2022	9.2	7.0 - 9.2	units	Measure of corrosively of water
		Levels lower than detect			
Silver	2022	level	0 - 0	ppm	Erosion of natural deposits
Sodium	2022	95.4	26.5 - 95.4	ppm	Erosion of natural deposits, by-product of oil field activity
					Naturally occurring; common industrial
Sulfate	2022	171	84.2 - 171	ppm	by-product, by-product of oil field activity
Total Alkalinity as CaCO3	2022	139	69-139	ppm	Naturally occurring soluble mineral salts
					Total dissolved mineral constituents in
Total Dissolved Solids	2022	492	269 - 492	ppm	water
Total Hardness as CaCO3	2022	194	90 - 194	ppm	Naturally occurring calcium
		Levels lower than detect			Moderately abundant naturally occurring
Zinc	2022	level	0 - 0	ppm	element used in the metal industry

Violations

Violation Type	Violation Begin	Violation End	Violation Explanation
None			